Package 'LFDR.MLE'

Title: Estimation of the Local False Discovery Rates by Type II Maximum Likelihood Estimation
Description: Suite of R functions for the estimation of the local false discovery rate (LFDR) using Type II maximum likelihood estimation (MLE).
Authors: Ye Yang, Marta Padilla, Alaa Ali, Kyle Leckett, Zhenyu Yang, Zuojing Li, Corey M. Yanofsky and David R. Bickel
Maintainer: M. Padilla <[email protected]>
License: GPL-3
Version: 1.0.1
Built: 2025-03-23 05:23:47 UTC
Source: https://github.com/cran/LFDR.MLE

Help Index


Estimation of the Local False Discovery Rate using Type II Maximum Likelihood Estimation.

Description

Suite of R functions for the estimation of the local false discovery rate (LFDR) using Type II maximum likelihood estimation (MLE).

Details

Package: LFDR.MLE
Type: Package
Version: 1.0
Date: 2015-07-30
License: GPL-3
Depends: R (>= 2.14.0), stats, methods
URL: http://www.cran.r-project.org, http://www.statomics.com

Author(s)

Code: Ye Yang, Marta Padilla, Zhenyu Yang, Zuojing Li, Corey M. Yanofsky
Documentation: Alaa Ali, Kyle Leckett, Marta Padilla
Maintainer: D. R. Bickel <[email protected]>

References

Yang, Y., & Bickel, D. R. (2010). Minimum description length and empirical Bayes methods of identifying SNPs associated with disease. Technical Report, Ottawa Institute of Systems Biology, COBRA Preprint Series, Article 74, available at biostats.bepress.com/cobra/ps/art74.

Bickel, D. R. (2010). Minimum description length methods of medium-scale simultaneous inference. arXiv preprint arXiv:1009.5981.

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

Examples

dFUN<-dabsTd; dfx <- 4
n.alternative <- 3; n.null <- 4; true.ncp <- 7

#NOTE: arguments for dFUN are x, df, ncp. If dFUN has other arguments, 
#please adapt them. For example:
#dFUN<-function(x,df,ncp){dnorm(x=x,mean=ncp,sd=df)};attr(dFUN,'name')<-'dnorm'

#In the examples, W is the result of the absolute value of the t.test statistics 
#on the data

W<-abs(c(rt(n=n.alternative,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))
W[c(1,3,5)]<-NA

z1<-lfdr.mle(x=W,dFUN=dFUN, df=dfx)
z2<-lfdr.mle(x=W,dFUN=dFUN, df=dfx,fixed.p0=0.4,fixed.ncp=4)
z3<-lfdr.mdl(x=W,df=dfx,dFUN=dFUN)
z4<-lfdr.l1o(x=W,df=dfx,dFUN=dFUN)
z5<-lfdr.lho(x=W,df=dfx,dFUN=dFUN,fixed.ncp=5)
z6<-lfdr.lo(x=W,v=1/3,df=dfx,dFUN=dFUN)
z7<-lfdr.mdlo(x=W,v=1/3,df=dfx,dFUN=dFUN)

Density of the absolute Student t Distribution.

Description

Density of the absolute t distribution with df degrees of freedom and non-centrality parameter ncp.

Usage

dabsTd(x, df, ncp = 0, ...)

Arguments

x

vector of quantiles.

df

degrees of freedom (>0).

ncp

noncentrality parameter.

...

arguments to pass to functions dt from basic R.

Value

numeric of length equal to the length of x.

Author(s)

Code: David R. Bickel,
Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

See Also

Function dt from basic R.

Examples

z1<-dabsTd(x = c(1:4), df = 3, ncp = 3)

Leave-one-out (L1O) and leave-half-out (LHO) method for LFDR estimation.

Description

Estimate the local false discovery rate using the leave-one-out method (L1O) or the leave-half-out method (LHO).

Usage

lfdr.l1o(x, dFUN = dabsTd, lower.ncp = 0.001, upper.ncp = 20, lower.p0 = 0,
      upper.p0 = 1, fixed.p0 = NULL, fixed.ncp = NULL, d0 = 0, ...)

lfdr.lho(x, dFUN = dabsTd, lower.ncp = 0.001, upper.ncp = 20, lower.p0 = 0,  
      upper.p0 = 1, fixed.p0 = NULL, fixed.ncp = NULL, d0 = 0, ...)

lfdr.lo(x, dFUN = dabsTd, lower.ncp = 0.001, upper.ncp = 20, lower.p0 = 0,
      upper.p0 = 1, fixed.p0 = NULL, fixed.ncp = NULL, v = 0, d0 = 0, ...)

Arguments

x

Input numeric vector of statistics.

dFUN

Density function; default dabsTd (from absolute value of the Student t distribution)

lower.ncp

The lowerbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 0.001

upper.ncp

The upperbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 20

lower.p0

The lowerbound of p0 (proportion of unaffected features (null hypothesis)); default value is 0

upper.p0

The upperbound of p0 (proportion of unaffected features (null hypothesis)); default value is 1

fixed.p0

A fixed value of p0 (proportion of unaffected features (null hypothesis)); default value is NULL

fixed.ncp

A fixed value of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is NULL

v

v in [0,1], portion of one feature that is considered in turn to estimate the LFDR; default value is v=0 (for lfdr.l1o (L1O)) and v=1/2 (for lfdr.lho (LHO)). For other values of v, use lfdr.lo.

d0

the numeric value of the null hypothesis for dFUN, default value is 0.

...

Other parameters to pass to dFUN (see notes and examples).

Value

A list with:

LFDR.hat

estimates of the LFDR

p0.hat

estimate of the proportion of unaffected features p0 (true null hypothesis).

ncp.hat

estimate of the location parameter of the distribution dFUN (ncp: noncentrality parameter of dFUN=dabsTd by default).

info

method name and information about computation failure.

Note

- Requires fixed.p0=NULL.

- The probability density function (dFUN) can be set to any other distribution, adapted so that the location parameter corresponds to ncp, other parameter to df and any other can be passed to dFUN by the dots (see examples in lfdr.mle).

- If computation fails for all features, p0.hat is set to NA and so is LFDR.hat, which is a vector of NA with lengh equal to the number of features. If it fails for a given feature, only the resulting LFDR for that feature is set to NA. Error messages are not suppressed.

Author(s)

Code: Marta Padilla
Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

References

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

See Also

lfdr.mle, lfdr.mdl.

Examples

dfx <- 4;n.alt <- 1;n.null <- 4;true.ncp <- 7
#numeric imput data: statistics of the data with missing values (removed internally)
#(result of a absolute t.test statistics on the data)
W<-abs(c(rt(n=n.alt,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))
W[3]<-NA

z1<-lfdr.l1o(x=W,df=dfx)
z2<-lfdr.lho(x=W,df=dfx,fixed.ncp=10)
z3<-lfdr.lo(x=W,df=dfx,v=1/3,fixed.p0=0.3)

Minimum description length (MDL) method for estimation of LFDR.

Description

Estimate the local false discovery rate using the minimum description length (MDL) method.

Usage

lfdr.mdl(x, dFUN = dabsTd, lower.ncp = 0.001, upper.ncp = 20, lower.p0 = 0,
        upper.p0 = 1, fixed.p0 = NULL, fixed.ncp = NULL, d0 = 0, ...)

lfdr.mdlo(x, v = 0, dFUN = dabsTd, lower.ncp = 0.001, upper.ncp = 20, 
        lower.p0 = 0, upper.p0 = 1, fixed.p0 = NULL, fixed.ncp = NULL,
        d0 = 0, ...)

Arguments

x

Input numeric vector of statistics.

dFUN

Density function; default dabsTd (from absolute value of the Student t distribution)

v

v in [0,1], portion of one feature that is considered in turn to estimate the LFDR; default value is v=0 (for lfdr.l1o (L1O)) and v=1/2 (for lfdr.lho (LHO)). For other values of v, use lfdr.lo.

lower.ncp

The lowerbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 0.001

upper.ncp

The upperbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 20

lower.p0

The lowerbound of p0 (proportion of unaffected features (null hypothesis)); default value is 0

upper.p0

The upperbound of p0 (proportion of unaffected features (null hypothesis)); default value is 1

fixed.p0

A fixed value of p0 (proportion of unaffected features (null hypothesis)); default value is NULL

fixed.ncp

A fixed value of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is NULL

d0

the numeric value of the null hypothesis for dFUN, default value is 0.

...

Other parameters to pass to dFUN (see notes and examples).

Value

A list with:

LFDR.hat

estimates of the LFDR

p0.hat

estimate of the proportion of unaffected features p0 (true null hypothesis).

ncp.hat

estimate of the location parameter of the distribution dFUN (ncp: noncentrality parameter of dFUN=dabsTd by default).

info

method name and information about computation failure.

Note

- The probability density function (dFUN) can be set to any other distribution, adapted so that the location parameter corresponds to ncp, other parameter to df and any other can be passed to dFUN by the dots (see examples in lfdr.mle).

- If computation fails for all features, p0.hat is set to NA and so is LFDR.hat, which is a vector of NA with lengh equal to the number of features. If it fails for a given feature, only the resulting LFDR for that feature is set to NA. Error messages are not suppressed.

Author(s)

Code: Marta Padilla
Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

References

Bickel, D. R. (2010). Minimum description length methods of medium-scale simultaneous inference. arXiv preprint arXiv:1009.5981.

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

See Also

lfdr.mle, lfdr.l1o.

Examples

dfx <- 4;n.alt <- 1;n.null <- 4;true.ncp <- 7
#numeric imput data: statistics of the data with missing values (removed internally)
#(result of a absolute t.test statistics on the data)
W<-abs(c(rt(n=n.alt,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))
W[3]<-NA

z1<-lfdr.mdl(x=W,df=dfx)
z2<-lfdr.mdl(x=W,df=dfx,fixed.ncp=10)
z3<-lfdr.mdlo(x=W,df=dfx,v=1/3,fixed.p0=0.3)

Type II Maximum likelihood estimate of LFDR (LFDR-MLE).

Description

Estimates the local false discovery rate by the Type II maximum likelihood estimates (MLE).

Usage

lfdr.mle(x, dFUN = dabsTd, lower.ncp = 0.001, upper.ncp = 20,lower.p0 = 0, upper.p0 = 1,
         fixed.p0 = NULL, fixed.ncp = NULL, d0 = 0, ...)

Arguments

x

Input numeric vector of statistics.

dFUN

Density function; default dabsTd (from absolute value of the Student t distribution)

lower.ncp

The lowerbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 0.001

upper.ncp

The upperbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 20

lower.p0

The lowerbound of p0 (proportion of unaffected features (null hypothesis)); default value is 0

upper.p0

The upperbound of p0 (proportion of unaffected features (null hypothesis)); default value is 1

fixed.p0

A fixed value of p0 (proportion of unaffected features (null hypothesis)); default value is NULL

fixed.ncp

A fixed value of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is NULL

d0

the numeric value of the null hypothesis for dFUN, default value is 0.

...

Other parameters to pass to dFUN (see notes and examples).

Value

A list with:

LFDR.hat

estimates of the LFDR

p0.hat

estimate of the proportion of unaffected features p0 (true null hypothesis).

ncp.hat

estimate of the location parameter of the distribution dFUN (ncp: noncentrality parameter of dFUN=dabsTd by default).

info

method name and information about computation failure.

Note

- The probability density function (dFUN) can be set to any other distribution, adapted so that the location parameter corresponds to ncp, other parameter to df and any other can be passed to dFUN by the dots (see examples in lfdr.mle).

- If computation fails for all features, p0.hat is set to NA and so is LFDR.hat, which is a vector of NA with lengh equal to the number of features. If it fails for a given feature, only the resulting LFDR for that feature is set to NA. Error messages are not suppressed.

Author(s)

Code: Ye Yang, Marta Padilla, Zhenyu Yang, Zuojing Li, Corey M. Yanofsky
Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

References

Yang, Y., & Bickel, D. R. (2010). Minimum description length and empirical Bayes methods of identifying SNPs associated with disease. Technical Report, Ottawa Institute of Systems Biology, COBRA Preprint Series, Article 74, available at biostats.bepress.com/cobra/ps/art74.

Bickel, D. R. (2010). Minimum description length methods of medium-scale simultaneous inference. arXiv preprint arXiv:1009.5981.

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

See Also

lfdr.mdl, lfdr.l1o, lfdr.lho.

Examples

#numeric imput data: statistics of the data with missing values (removed internally)
#(result of a absolute t.test statistics on the data)
dfx <- 4;n.alt <- 1;n.null <- 4;true.ncp <- 7
W<-abs(c(rt(n=n.alt,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))
W[3]<-NA

z1<-lfdr.mle(x=W,dFUN=dabsTd, df=dfx)
z2<-lfdr.mle(x=W,dFUN=dabsTd, df=dfx, fixed.p0=0.4, fixed.ncp=4)

#other dFUN -------
#NOTE: arguments for dFUN are x, df, ncp. If dFUN has other arguments, 
#please adapt them. For example:

new.df<-function(x,df,ncp,...){df(x=x,ncp=ncp,df1=df,...)}
z3<-lfdr.mle(x=W,df=dfx,dFUN=new.df,df2=5)